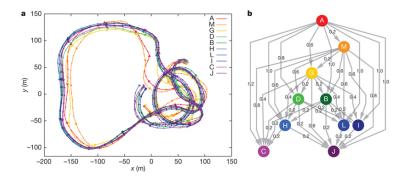
Fission-fusion Multi-robot Systems

Brent E. Eskridge¹ and Ingo Schlupp²

¹Southern Nazarene University, Bethany, OK, USA ²University of Oklahoma, Norman, OK, USA

7 October 2016


Introduction	Previous 00000000	Fission-fusion	Proposed	Opportunities	Wrapup 00
Warning	٦l				

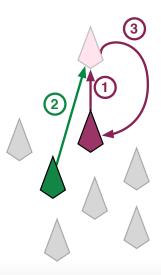
- Not your typical research presentation
- More biology than robotics
 - Agent-based modeling
- Some math, sociology, and psychology thrown in

https://www.youtube.com/watch?v=UFF74jWZmM4

Producing similar behavior in robots is difficult

- Doesn't adapt well to changing conditions
- Usually requires significant communication
- Doesn't scale up
- How can we do it in Multi-Robot Systems (MRSs)?
- "Emergent Hierarchies of Leaders in Multi-Robot Systems"
 - NSF grant number BCS-1124837 (\$159,552)

Research hypothesis


We hypothesize, using inspiration from biological systems, that a hierarchy of leaders can emerge in a multi-robot system without explicit communication.

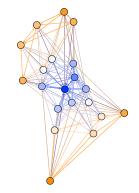
Introduction o	Previous oo●ooooo	Fission-fusion	Proposed 0000000	Opportunities	Wrapup 00

Decision-making events

Three decision-making events

- Initiate a movement
- Follow an initiator
 - Cancel a movement

Leadership lessons from the dancing man



https://www.youtube.com/watch?v=V_qO7NFp4-s

Leadership is affected by personality

- Bold individuals tend to lead more than shy
- Bold/shy is a single continuum
- Communication network is biased towards central individuals
 - But some information is only gathered at periphery
- Multiple personality traits can balance this bias somewhat

Introduction	Previous	Fission-fusion	Proposed	Opportunities	Wrapup
	000000000	000000	0000000		

Conflict isn't necessarily bad

- Conflicts of interest are natural in groups
- Can be cause by:
 - Different decision-making
 - Different information/uncertainty
 - Different motivations/goals
- Sometimes beneficial

Introduction o	Previous oooooo●o	Fission-fusion	Proposed	Opportunities	Wrapup 00
Student	t participar	nts			

*

Jeremy Acre	Math	Math project	
Byron Crouch	CS	NASA SRE	
Cora Cummins	MC	Media	
Blake Jordan	CS	URA	
Brenda Rivera	MC	Media	
Kyler Ross	Chemistry	NASA SRE	
Tim Solum	CS	URA	
Elizabeth Valle	Biology	URA	

■ Published a paper ★ Conference travel

Introduction O	Previous ooooooo●	Fission-fusion	Proposed	Opportunities	Wrapup 00
Where r	now?				

- ► Movement → dynamic communication network
- Allow explicit communication
- Investigate stable hierarchies
- Add social status
- Try more complex tasks
- Add more conflicts of interest
- Add hostile agents

Introduction O	Previous	Fission-fusion ●੦੦੦੦੦	Proposed	Opportunities	Wrapup 00
· · ·					

Sample robot team scenario

- Consider an MRS engaging in a search & rescue task
- Group splits up to cover more ground
- Subgroup enters a building that requires a larger group
- Another subgroup decides to merge with the first to help
- All subgroups merge as they return home

Introduction O	Previous 00000000	Fission-fusion o●oooo	Proposed	Opportunities	Wrapup 00
Current	state-of-th	ne-art			

- Existing approaches for artificial systems:
 - Tend to search for optimal sub-groups
 - Focus on multi-agent systems, not multi-robot systems
- Emergent coordination doesn't make these assumptions
 - Only focuses on the macro and not individual decision-making

Introduction O	Previous 00000000	Fission-fusion 00●000	Proposed	Opportunities	Wrapup 00
Hyenas	society				

Introduction O	Previous 00000000	Fission-fusion 000●●0	Proposed	Opportunities	Wrapup 00
Fission	-fusion soc	ciety			

Definition

"A society consisting of casual groups of variable size and composition, which form, break up and reform at frequent intervals." [1]

- Group splits (fission) when costs > benefits
- ► Groups merge (fusion) when costs < benefits
- Dynamic process size & composition change frequently
- Relieves tension caused by conflicts of interest

Introduction Previous Fission-fusion Proposed Opportunities Wrapup oo

Fission-fusion society (*cont'd*)

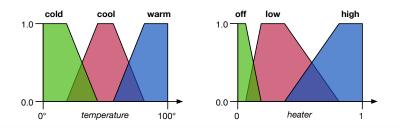
D · · · ·	1.1	e			
		000000			
Introduction	Previous	Fission-fusion	Proposed	Opportunities	Wrapup

Potential benefits for artificial systems

- Individuals are self-motivated
- Minimal communication required
- Scales to large group sizes
- Adapts to changing environments, tasks, & robot states
- Conflict resolution

Introduction o	Previous 00000000	Fission-fusion	Proposed •oooooo	Opportunities	Wrapup 00
NSF Gr	ant 2016–	2019			

Produce same behavior in artificial systems?


- Specifically in Multi-Robot Systems (MRSs)
- "Fission-Fusion Multi-Robot Systems"
 - ▶ NSF grant number RI-1617838 (\$192,557)

Research hypothesis

We hypothesize, using inspiration from biological systems, that MRSs can be designed to adapt subgroup size and number dynamically depending on the current task using artificial analogues of biological and environmental factors.

Introduction o	Previous 00000000	Fission-fusion	Proposed o●oooooo	Opportunities	Wrapup 00
Design	and appro	ach			

- Decision-making is the same as the last project [3]
 - Probabilistic Finite State Machine (PFSM)
- Behaviors use Adaptive Fuzzy Behavior Hierarchies [2]
- Evolve neural networks to implement behaviors [4]
- Extract fuzzy rules from neural networks

Introduction o	Previous 00000000	Fission-fusion	Proposed 000000	Opportunities	Wrapup 00
Researc	Research goals				

- Goal 1: Relevant biological and environmental factors contributing to **fission** and **fusion**
- Goal 2: Relevant biological and environmental factors contributing to dynamic group sizes
- Goal 3: Implement the fission-fusion decision-making system in physical robots

Introduction o	Previous 00000000	Fission-fusion	Proposed 0000000	Opportunities	Wrapup 00
Goal 1 p	olan				

- Find relevant biological and environmental factors contributing to fission and fusion
- Which ones have artificial analogues that are relevant?
 - Time
 - Energy
 - Conflict
 - Social
 - Environmental (e.g., temporal and spatial variability of resources)
- Stability is key!
- Simulated MRSs to evaluate wide range of possibilities

Introduction o	Previous 00000000	Fission-fusion	Proposed ○○○○●○○	Opportunities	Wrapup 00
Goal 2	olan				

- Find biological and environmental factors contributing to dynamic group sizes
- Which ones have artificial analogues that are relevant?
- Generalized decision-making process capable of addressing transitions autonomously
- Simulated MRSs to evaluate wide range of possibilities

Introduction o	Previous 00000000	Fission-fusion	Proposed oooooo●o	Opportunities	Wrapup 00
Goal 3	nlan				

- Implement the fission-fusion decision-making system in physical robots
- Constraints imposed by physical robots with limited capabilities
 - Limited sensor suites
 - Noise
 - Limited computational resources
- 12 e-Puck robots with Omnivision (\$2,300/each)

Introduction o	Previous 00000000	Fission-fusion	Proposed 000000	Opportunities	Wrapup 00
Broade	r impacts				

- Mentor Bethany HS First Robotics team
- Informational videos accessible to a wide audience
- Interdisciplinary research opportunity for SNU students

Introduction	Previous	Fission-fusion	Proposed	Opportunities ●○	Wrapup 00

Student Research Opportunities

- Two Undergraduate Research Assistants will:
 - Perform experiments
 - Analyze results
 - Write and prepare publications
 - If accepted, travel to a conference
- Year-round participation:
 - 10 hours/week during the school year
 - 40 hours/week for 10 weeks during the summer
- Annual stipend starting at \$7,600

Ctudent Medie Oppertugities						
				0		
Introduction	Previous	Fission-fusion	Proposed	Opportunities	Wrapup	

Student Media Opportunities

- Two Undergraduate Media Assistants will:
 - Communicate to a wider audience
 - Create videos
 - Communicate technical and non-technical benefits
- Academic year participation (starting year 2):
 - Estimate of 80 hours over academic year
 - No summer work
- Approximate stipend of \$800

Introduction o	Previous 00000000	Fission-fusion	Proposed 0000000	Opportunities	Wrapup ●○	
Acknowledgments						

- Co-PI: Dr. Ingo Schlupp (OU)
- Southern Nazarene University
- This material is supported by the National Science Foundation under Grant No. BI-1617838

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Introduction O	Previous	Fission-fusion	Proposed	Opportunities	Wrapup ⊙●

Questions?

www.csne.snu.edu/research/apply

October 14 Deadline

References

L. Conradt and T.J. Roper.

Consensus decision making in animals.

Trends in Ecology & Evolution, 20(8):449-456, 2005.

Brent E. Eskridge and Dean F. Hougen.

Extending adaptive fuzzy behavior hierarchies to multiple levels of composite behaviors.

Robotics and Autonomous Systems, 58(9):1076–1084, 2010.

Jacques Gautrais.

The hidden variables of leadership.

Behavioural Processes, 84(3):664–667, 2010.

Kenneth O. Stanley and Risto Miikkulainen.

Evolving neural networks through augmenting topologies.

Evolutionary Computation, 10(2):99–127, 2002.