Consensus Costs and Conflict in a Collective Movement

Tim Solum¹, Brent E. Eskridge¹, and Ingo Schlupp²

¹Southern Nazarene University, Bethany, OK, USA ²University of Oklahoma, Norman, OK, USA

July 15, 2014

Methods

Results

Conclusions

Collective Movement

- Observed in nature
 - Flocking of birds
 - Shoals of fish
 - Migrating wildebeests
- Benefits in nature
 - Increased foraging success
 - Protection from predators
- Benefits in robot swarms
 - Robustness
 - Flexibility
 - Scalability

Background	Methods	Results	Conclusions
o●oo	000000000	00000	
Costs			

- Compromise is not an option [2]
- Individual may not achieve goal
- Getting pizza when wanting tacos

- Conflict arises from differing preferences [1]
 - Often ignored in collective movement systems
- Decisions can take longer but
- Could be useful when compromise is not an option

Background	Methods	Results	Conclusions
0000			

Research Hypothesis

Conflict minimizes consensus costs in collective movements while allowing for group cohesion

Methods ••••••• Results

Conclusions

Collective Movement Model

- Based on observations of natural systems [4] [3]
 - Capuchin monkeys
 - Validated in sheep
- Modifications
 - Discrete time
 - Movement
 - Multiple Initiators
 - Destination Preferences
 - Conflict

Background

Methods oeoooooooo Results

Conclusions

Decision Rules

Three decision-making events

- Initiate a movement
- Follow an initiator
 - Cancel a movement

Background 0000	Methods oo●ooooooo	Results 00000	Conclusions
Decision Proba	abilities		
Initiate	$ au_i =$	$\frac{1}{\tau_{\alpha}}$	(1)
Follow		Ũ	
	$\tau_r = \alpha_f + \beta_f -$	$\frac{N-r}{r}$	(2)
Cancel	<i>C</i> _{<i>r</i>} =	α_{c}	(3)

$$C_r = \frac{\alpha_c}{1 + (r/\gamma_c)^{\epsilon_c}}$$

Backg	ro	۱d

Results

Discrete Time

Do Nothing decision needed

- Decisions made at every time step
- Individuals continue doing what they were doing
- Must do something if current leader changes groups

Background	Methods	Results	Conclusions
	000000000		

Background Methods Conclusions Conclusions

$$C_i = rac{| heta|}{\pi}$$

(6)

- C_i Conflict for individual *i*
 - θ Conflict angle $[-\pi:\pi]$

0.9

Background	Methods	Results	Conclusions
	0000000000		

Evaluation Environments

Background	Methods ○○○○○○○○●	Results	Conclusions
Simulations			

- ► 3 treatments were used on each environment
 - No conflict and no consensus costs (Baseline)
 - No conflict and consensus costs
 - Conflict and consensus costs
- No consensus costs means that the entire group prefers the same destination
- 1,000 simulations per environment
- 20,000 max time steps

Background	Methods 000000000	Results ●0000	Conclusions

Minimum Initial Conflict Movement Histories

Without Conflict

With Conflict

Minimum Initial Conflict with 10 Individuals

Minimum Initial Conflict with 50 Individuals

Background	Methods	Results	Conclusions
			● 00 0

Conclusions

- Addition of conflict
 - Balanced consensus costs with individual preferences
 - Significantly improved individual success
- Consensus costs cause individuals to not achieve their goals
 - Up to 50% in our simulations
- If we don't want to pay consensus costs, conflict successfully reduces them

Background	Methods	Results	Conclusio
			0000

Future Work

- Can we balance consensus costs and individual preferences?
- Multi-objective Optimization
- Use a more tunable decision-making model [5]
- Add predation and uninformed agents
- Improve movement (e.g., Flocking)

Background	Methods	Results	Conclusions
			0000

Acknowledgments

- Blake Jordan
- Southern Nazarene University
- This material is based upon work supported by the National Science Foundation under Grant No. BCS-1124837

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Questions?

Videos and other materials can be found at: www.csne.snu.edu/tag/gecco2014/

Source code can be found at: github.com/snucsne/bio-inspired-leadership

References

 Larissa Conradt and Timothy J Roper.
Conflicts of interest and the evolution of decision sharing.
Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1518):807–819, 2009.

Larissa Conradt and Timothy J Roper.
Deciding group movements: Where and when to go.
Behavioural processes, 84(3):675–677, 2010.

Jacques Gautrais.

The hidden variables of leadership.

Behavioural Processes, 84(3):664-667, 2010.

References (cont'd)

O. Petit, J. Gautrais, J.-B. Leca, G. Theraulaz, and J.-L. Deneubourg.

Collective decision-making in white-faced capuchin monkeys.

Proceedings of the Royal Society B: Biological Sciences, 276(1672):3495–3503, 2009.

C. Sueur, J.L. Deneubourg, and O. Petit.

From the first intention movement to the last joiner: Macaques combine mimetic rules to optimize their collective decisions.

Proceedings of the Royal Society B: Biological Sciences, 278(1712):1697–1704, 2011.

Supplemental

Initiation Probability

$$\tau_i = \frac{1}{\tau_o}$$

(8)

 τ_i - initation rate

 τ_o - initiation rate constant

Assumes all agents within a group are identical

Following Probability

$$\tau_r = \alpha_f + \beta_f \frac{N - r}{r} \tag{9}$$

- τ_r follow rate
- $\alpha_{\rm f} \mbox{ and } \beta_{\rm f}$ constants
- N number in the group
- r number following initiator

Cancellation Probability

$$C_r = \frac{\alpha_c}{1 + (r/\gamma_c)^{\epsilon_c}} \tag{10}$$

 C_r - cancel rate α_c, λ_c and ϵ_c - constants r - number following initiator

Conflict

Moderate Initial Conflict with 10 Individuals

Moderate Initial Conflict with 50 Individuals

Moderate Initial Conflict with 10 Individuals

Moderate Initial Conflict with 50 Individuals

Maximum Initial Conflict with 10 Individuals

Maximum Initial Conflict with 50 Individuals

Maximum Initial Conflict with 10 Individuals

Maximum Initial Conflict with 50 Individuals

