Adapting to a Changing Environment Using Winner and Loser Effects

Jeremy Acre¹, Brent E. Eskridge¹, Nicholas Zoller¹, and Ingo Schlupp²

¹Southern Nazarene University, Bethany, OK, USA ²University of Oklahoma, Norman, OK, USA

July 15, 2014

Model

Results

Conclusions

Motivation

- Improve group cooperation and coordination
- Transitory leadership
- Example: Robot search and rescue team

Results

Conclusions

Behavioral Attributes

Personality

- Set of correlated traits that affect behavior
- ▶ Bold → leaders
- Shy \rightarrow followers
- Winner and Loser Effects
 - Experiences change personality
 - Success \rightarrow more experiences
 - Failure \rightarrow fewer experiences

Model

Results

Conclusions

Previous Work

- Static environment
- Adaptive personality using winner and loser effects
- Stable differentiation
- Leaders emerge

Overview

Model

Results

Conclusions

Research Hypothesis

Winner and loser effects produce personalities with stable, transitory leaders who change roles in response to changes in the environment

Results

Conclusions

Collective Movement Model

- Biologically inspired
- Modeled after observations of White-faced Capuchin Monkeys [2, 1]
- Confirmed in sheep groups of 2–8 members [3]
- No movement

Model o●ooooooo Results

Conclusions

Decision Events

Three decision-making events

- Initiate a movement
- Follow an initiator
 - Cancel a movement

Model oo●oooooo Results

Conclusions

Integrating Personality

- ► Bold: ■ Initiate, ↓ Follow, ↓ Cancel
- ► Shy:
 - Initiate, T Follow, T Cancel
- Limited personalities to [0.1,0.9]
- Assumed default personality of 0.5

Departed individuals

Overview	Model	Results	Conclusions
0000	○○○○○●○○	000000	
Preferred Direct	tions		

Overview 0000 Results

Conclusions

Short-term Winner and Loser Effects

- Effects decay as last experience becomes older
- Momentum decay -"reverse" exponential
- Chosen because of its slow initial decay rate

Overview 0000		Model	Model ○○○○○○○●		Results 000000	Conclusions	

Numerical Treatments

Initial personalities:

- ▶ Shy (*p* = 0.2)
- Moderate (*p* = 0.5)
- ▶ Bold (p = 0.8)
- Group sizes of 20–50
- 50 evaluations
- 2000 \times *N* simulations per evaluation

Source available at

https://github.com/snucsne/bio-inspired-leadership

Direction Change: Once Effective Leader

20000

30000

10000

0.2

40000

0.0 Shy

0.2

Shy 0.0

0

Direction Change & Change Back

Direction Change: Personality Decay

Overview	Model	Results	Conclusions
0000	00000000	oooooo●	

Direction Change: Personality Decay

Conclusions

- Personalities adapt to success and failure
 - Fixed environment (previous)
 - Recently changed (dynamic)
- Decay promotes faster adaptation
 - Provides personality "boost"
 - Gain up-to-date information
- Initial personality affects success (especially with decay)
 - Initially bold \rightarrow no differentiation
 - ► Initially shy → differentiation

Future Work

- Incorporate results for actual movement
- Investigate better balance between personality decay benefits and detriments
- Search for quicker methods of adaptation

Model

Results

Conclusions

Acknowledgments

- OU Supercomputing Center for Education & Research (OSCER)
- Southern Nazarene University
- This material is based upon work supported by the National Science Foundation under Grant No. BCS-1124837

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Model 000000000 Results

Conclusions

Questions?

Source code can be found at: github.com/snucsne/bio-inspired-leadership

References

Jacques Gautrais.

The hidden variables of leadership. Behavioural Processes, 84(3):664–667, 2010.

O. Petit, J. Gautrais, J.-B. Leca, G. Theraulaz, and J.-L. Deneubourg.

Collective decision-making in white-faced capuchin monkeys.

Proceedings of the Royal Society B: Biological Sciences, 276(1672):3495–3503, 2009.

 Marie-HIne Pillot, Jacques Gautrais, Patrick Arrufat, Iain D. Couzin, Richard Bon, and Jean-Louis Deneubourg.
Scalable rules for coherent group motion in a gregarious vertebrate.

PLoS ONE, 6(1):e14487, 01 2011.

Supplemental

(3)

Decision Event Equations

Initiation

Following

Canceling

$$C_r = k_i \left(\frac{\alpha_c}{1 + (r/\gamma_c)^{\varepsilon_c}}\right)$$

Destructive Personality Decay

Destructive Personality Decay

Statistical Analysis

Group									
Size	Adaptation	Bold statistic	Wit	hout decay			With decay		
	Change	Simulations	2503.6	±2663.2		2222.1	±2861.2	*	
20	Change	Simulations (first)	1470.1	\pm 431.3		1198.6	\pm 438.6	*	
		Initiations	387.7	±212.3		334.1	±228.8	*	
20	Change	Initiations (first)	210.9	± 37.3		158.6	±40.1	*	
	Change	Simulations	5613.0	± 5213.0		5608.5	± 6523.2	*	
		Simulations (first)	1791.9	± 416.3		1254.9	± 472.1	*	
	Initial	Initiations	238.5	±152.4	*	262.5	±163.4		
		Simulations	4946.9	± 5023.5	*	7002.5	\pm 8112.0		
		Initiations	391.2	±212.1		305.8	±185.4	*	
40	Change	Initiations (first)	194.2	±29.1		130.4	± 31.9	*	
	Change	Simulations	8983.4	\pm 8321.4		8790.1	± 9145.3	*	
		Simulations (first)	2364.6	\pm 432.7		1680.2	\pm 435.9	*	
	Initial	Simulations	6824.6	±7155.9	*	8869.4	± 10034.7		
	Change	Initiations	357.1	± 169.9		307.5	± 188.4	*	
50		Initiations (first)	180.3	± 20.7		119.6	± 17.4	*	
		Simulations	11320.3	± 9725.8	*	11479.1	± 11256.1		
		Simulations (first)	2812.4	± 450.6		2176.8	± 366.2	*	

References o

Decay Graphs

Decay Equations

Constant decay:

$$p_{t+1} = \begin{cases} p_l - \Delta t d_t & \text{if } p > p_i, \\ p_l + \Delta t d_t & \text{if } p < p_i. \end{cases}$$
(4)

Linear decay:

$$p_{t+1} = p_l + \Delta t \frac{p_i - p_l}{d_t} \tag{5}$$

Exponential decay:

$$\boldsymbol{p}_{t+1} = (\boldsymbol{p}_l - \boldsymbol{p}_i) \left(\mathrm{e}^{(\Delta t - d_t)/5} \right) + \boldsymbol{p}_i \tag{6}$$

Momentum decay:

$$p_{t+1} = (p_l - p_i) \left(1 - e^{(\Delta t - d_t)/5} \right) + p_i$$
 (7)

References

References

