Effects of Conflict on Collective Movement Decision-Making

Brent E. Eskridge¹, Blake Jordan¹, and Ingo Schlupp²

¹Southern Nazarene University, Bethany, OK, USA ²University of Oklahoma, Norman, OK, USA

September 20, 2013

Overview	Model	Results	Conclusions
●0000			

Group Coordination in Artificial Systems

- Coordination of large teams of robots or agents is difficult
- Most approaches are either:
 - Reliant on significant communication, or
 - Limited and specific
- Not practical for interesting environments
- Need an approach that is:
 - Adaptive
 - Not reliant on explicit communication
 - Simple
- Models decision-making process

Overview 00000 Model

Results

Conclusions

Inspiration from Natural Systems

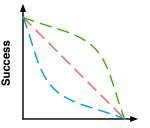
- Collective movements requiring coordination frequently observed
- Adapt to complex, dynamic environments
- Frequently require minimal communication
- General and adaptive

Image by Matthew Hoelscher and available at http://commons.wikimedia.org/wiki/File:Fish_school.jpg

Overview	Model	Results	Conclusions
00000			

Conflict in Artificial & Natural Systems

- Even in natural systems, conflicts of interest complicate coordination
- Individuals have different needs, information, and cost
- Conflict is observed universally, but most research focuses on the:
 - Navigation behaviors, or
 - Benefits of particular decision-making models
- Interested in conflict's effects on the decision-making involved in following a leader


Overview 00000 Model

Results

Conclusions

Research Questions

How does conflict affect the success of collective movements?

Conflict

Research Questions (cont'd)

Is there a conflict critical value?

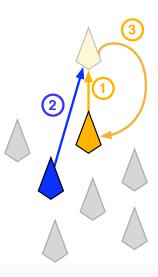
Overview 00000 Model •oooooooo Results

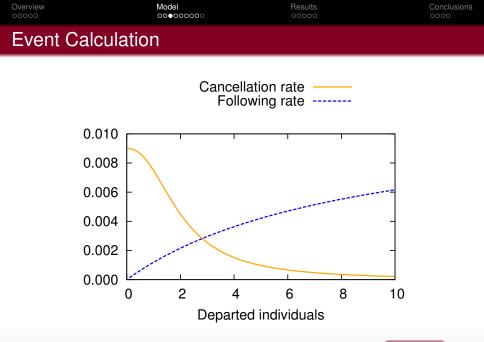
Conclusions

Collective Movement Model

- Modeled after observations of White-faced Capuchin Monkeys [3, 2]
- Group size of 10
- Confirmed in sheep groups of 2–8 members [4]
- Exhibits anonymous mimetism

Image by Steven G. Johnson and available at http://commons.wikimedia.org/wiki/File:Cebus_capucinus_2,_Costa_Rica.JPG

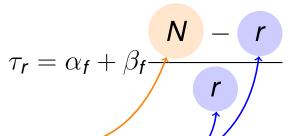

Overview 00000 Model o●ooooooo Results


Conclusions

Collective Movement Events

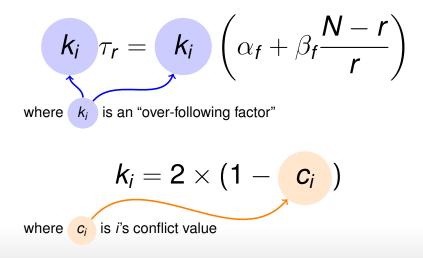
Three decision-making events

- Initiate a movement
- Follow an initiator
 - Cancel a movement



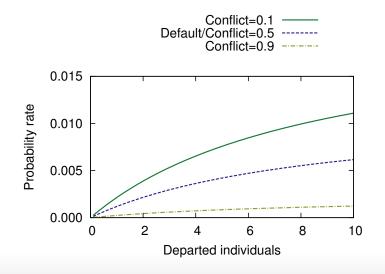
<u> </u>			
Overview	Model 000●00000	Results	Conclusions

Original Following Rate Calculation



(1)

- Group size -
- Individuals already departed -
- α_f and β_f calculated from observation
- Following times drawn from: $1/\tau_r$



Following Rate Calculation with Conflict

Effects of Conflict on Following Rate

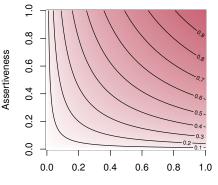
Overview	odel Results	Conclusions
00000 00	00000 00000	

Implementation of Conflict

ABSTRACT

- No specific biological motivation
- ▶ *c_i* ∈ [0, 1]
- Allowed us to speculate What if?

CONCRETE

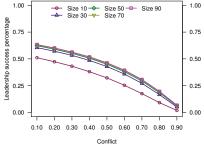

- Motivated by research in natural systems
- Combination of assertiveness and difference in preferred direction [1]
- ▶ c_i ∈ [0, 1]
- Provided more realistic situations

Overview	Model	Results	Conclusions
	000000000		

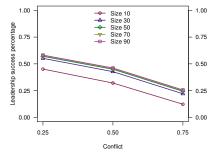
Concrete Conflict Calculation

$$m{c}_i = m{a}_i^{0.5} imes |m{d}_i - m{d}_i|^{0.5}$$

- a; individual i's assertiveness
- *d*_{*i*} individual *i*'s preferred direction
- d_l initiator's preferred direction
- ci individual i's conflict value


Direction difference

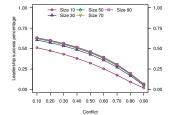
Numerical	Simulations		
Overview 00000	Model ○○○○○○○●	Results	Conclusions


- Evaluated group sizes in range N = [10, 90]
- 20,000 \times *N* simulations per evaluation
- Success: All members participating
- ABSTRACT
 - Same conflict value
 - Gaussian conflict value with standard deviation \pm 0.1
- Concrete
 - Single mean direction with standard deviation
 - Multiple mean directions with standard deviation

Overview	Model	Results	Conclusions
		0000	

Mean Leadership Success Percentage: Abstract

ABSTRACT-SAME

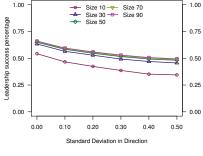


ABSTRACT-GAUSSIAN

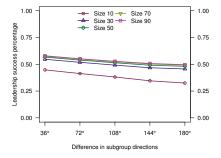
00000 00000	00000	

Simulation Predictions: Abstract

- Increased conflict results in reduced success
- Non-linear effects
- No critical conflict value
- Minimal difference between large group sizes (< 5%)
- Consistent results between treatments, but gaussian had higher standard deviation
- Variations in gaussian balance out

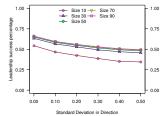

Overview	Model	Results	Conclusions
		0000	

Representative Preferred Direction Distributions



Overview	Model	Results	Conclusions
		00000	

Mean Leadership Success Percentage: Concrete



CONCRETE-MULTIPLE

Overview	Model	Results	Conclusions
		00000	

Simulation Predictions: Concrete

- Increased conflict results in reduced success
- Non-linear effects
- No critical conflict value
- Minimal difference between large group sizes
- Consistent between single and multiple direction conflicts
- Maximum conflict value experienced comparable to 50% ABSTRACT conflict value

Overview	Model	Results	Conclusions
00000	ooooooooo	00000	●○○○
Conclusions			

- Non-linear effects of conflict
- No critical conflict value resulting in a drastic reduction in leadership success
- Consistent results between all combinations
 - ▶ ABSTRACT-SAME
 - ► ABSTRACT-GAUSSIAN
 - CONCRETE-SINGLE
 - ► CONCRETE-MULTIPLE
- Maximum CONCRETE conflict values experienced comparable to 50% ABSTRACT conflict value

Future Work

- Dynamic (moving) simulations
 - Conflict changes over time
 - Requires navigation
- Broader meaning of conflict
 - General dissatisfaction
 - Changes over time, even if stationary

Overview	Model	Results	Conclusions
00000	ooooooooo	00000	○o●○

Acknowledgments

- Jacques Gautrais, Elizabeth Valle, and Tim Solum
- This material is based upon work supported by the National Science Foundation under Grant No. BCS-1124837.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Overview 00000 Model 000000000 Results

Conclusions

Questions?

References

Larissa Conradt and Timothy J Roper.

Conflicts of interest and the evolution of decision sharing.

Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1518):807–819, 2009.

Jacques Gautrais.

The hidden variables of leadership.

Behavioural Processes, 84(3):664–667, 2010.

O. Petit, J. Gautrais, J.-B. Leca, G. Theraulaz, and J.-L. Deneubourg.

Collective decision-making in white-faced capuchin monkeys.

Proceedings of the Royal Society B: Biological Sciences, 276(1672):3495–3503, 2009.

References (cont'd)

Marie-Hlne Pillot, Jacques Gautrais, Patrick Arrufat, Iain D. Couzin, Richard Bon, and Jean-Louis Deneubourg. Scalable rules for coherent group motion in a gregarious vertebrate.

PLoS ONE, 6(1):e14487, 01 2011.

Supplemental

(2)

Calculating Initiation Events

All individuals can initiate movement

 τ_i

- τ_i calculated from observation
- Initiation times drawn from: $1/\tau_i$

Calculating Following Events

$$\tau_r = \alpha_f + \beta_f \frac{N - r}{r}$$

(3)

- Group size -
- Individuals already departed -
- α_f and β_f calculated from observation
- Following times drawn from: $1/\tau_r$

Calculating Cancelling Events

$$C_r = \frac{\alpha_c}{1 + (r/\gamma_c)^{\varepsilon_c}}$$

(4)

- Individuals already departed
- α_c , γ_c and ε_c calculated from observation
- Cancellation times drawn from: C_r

