Effects of Local Communication and Spatial Position in a Collective Decision-Making Model

Brent E. Eskridge¹ and Ingo Schlupp²

¹Southern Nazarene University, Bethany, OK, USA ²University of Oklahoma, Norman, OK, USA beskridge@snu.edu

8 September 2017

Motivation

- Implementing large-scale collaborative behavior in robots
- Fission-fusion dynamics of large aggregations
- Bio-inspired collective decision-making
- Limited by local communication

Introduction	Background	Results	Wrapup
○●○		0000000	00

Spatial Position of Initiator

- Central individuals will be more successful initiators
- Incorporating temperament traits will increase success rate of non-central initiators

Background

Results 00000000 Wrapup 00

Decision-making events

Three decision-making events

- Initiate a movement
- Follow an initiator
 - Cancel a movement

Departed individuals

0.000

Introduction	Background	Results	Wrapup
	000000		

Temperament Traits: Overview

- Temperament is a set of repeatable differences in behavior across several traits
 - AKA Personality
- Most commonly student trait is bold/shy
- As many as 14 traits in primate behavior alone [1]
- Some determined by intrinsic state, others by life history

Introduction	Background	Results	Wrapup
	○○○○●○○○	0000000	00

Temperament Traits: Effects of Position

Mean distance

Mean resultant vector

Introduction	Background	Results	Wrapup
	00000000		

Mean Resultant Vector

Small MRV

Large MRV

Introduction	Background	Results	Wrapup
	ooooooo●o	0000000	00

Metric vs. Topological Distance Measures

Metric

Topological

Introduction	Background	Results	Wrapup
	0000000		

Numerical Implementation

- Group sizes from 20–50 individuals
- 50 spatial distributions
- Success simulations (Hypothesis 1)
 - 2,000 initiations per individual
- Temperament trait simulations (Hypothesis 2)
 - ▶ *N* × 4,000 initiations
 - Group behavior randomly chosen for each initiation
- Both topological and metric distances used
- All individuals must participate for success

Introduction	Background	Results ●○○○○○○○	

Results: Success Probabilities

Mimicking Neighbors

Vrapup

Metric N = 50

Introduction	Background	Results	Wrapup

Results: Success Probability Correlations

Туре	<i>N</i> = 20	<i>N</i> = 30	<i>N</i> = 40	<i>N</i> = 50
Metric	0.916	0.918	0.925	0.924
Topological	0.934	0.942	0.949	0.950

Success vs. mimicking neighbor count

Results oo●ooooo

Results: Success Probabilities

- Number of individuals that consider an individual a nearest neighbor (i.e. mimicking neighbors)
- $\blacktriangleright \ \ More \ mimicking \ neighbors \rightarrow More \ successful$
 - Central individuals as much as 40%
 - Periphery individuals as low as 10%
 - Dependent on distance measure
- Topological distance had more connections for N = 20, 30
- Metric distance had more connections for N = 50

Introduction	Background	Results	Wrapup
000		○○○●○○○○	00

Results: Temperament Trait for Navigate

Topological Bold

Introduction

Background

Results oooo●ooo Wrapup 00

Results: Temperament Trait for Explore

Metric Active

Topological Active

Introduction

Background

Results ooooo●oo Wrapup 00

Results: Temperament Traits for Escape

Metric Fearful

Topological Fearful

Introduction	Background	Results	Wrapup
000	00000000	ooooooooo	00

Introduction	Background	Results	Wrapup
000		○○○○○○○●	00
Discussion			

Significance of position

- Central individuals were more successful
- Peripheral individuals rarely succeeded at all
- Factors contributing to success
 - Mimicking neighbors
 - Temperament traits help, but can't overcome few mimicking neighbors
- Requirement for all individuals to participate is too restrictive
 - Exploration consists of a few individuals
 - Escaping individuals rarely cancel

Acknowledgments

- Co-PI: Dr. Ingo Schlupp (OU)
- Southern Nazarene University
- This material is supported by the National Science Foundation under Grant No. RI-1617838

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Questions?

References

Hani D Freeman and Samuel D Gosling.

Personality in nonhuman primates: a review and evaluation of past research.

American Journal of Primatology, 72(8):653-671, 2010.

Jacques Gautrais.

The hidden variables of leadership.

Behavioural Processes, 84(3):664–667, 2010.

O. Petit, J. Gautrais, J.-B. Leca, G. Theraulaz, and J.-L. Deneubourg.

Collective decision-making in white-faced capuchin monkeys.

Proceedings of the Royal Society B: Biological Sciences, 276(1672):3495–3503, 2009.

References (cont'd)

Marie-Hlne Pillot, Jacques Gautrais, Patrick Arrufat, Iain D. Couzin, Richard Bon, and Jean-Louis Deneubourg. Scalable rules for coherent group motion in a gregarious vertebrate.

PLoS ONE, 6(1):e14487, 01 2011.

Collective-Decision Making Model

- Modeled after observations of White-faced Capuchin Monkeys [3, 2]
- Confirmed in sheep groups of 2–8 members [4]
- No movement

Calculating Initiation Events

All individuals can initiate movement

au_{i}

(1)

- *\(\tau_i\)* calculated from observation
- Initiation times drawn from: k/τ_i

Calculating Following Events

- Group size —
- Individuals already departed -

 $\tau_r = \frac{1}{k} \left(\alpha_f + \beta_{f} - \frac{1}{k} \right)$

- α_f and β_f calculated from observation
- Following times drawn from: $1/\tau_r$

Calculating Cancelling Events

$$C_r = k \frac{\alpha_c}{1 + (r/\gamma_c)^{\varepsilon_c}}$$

(3)

- Individuals already departed /
- α_c , γ_c and ε_c calculated from observation
- Cancellation times drawn from: C_r

Behavior	Distance	<i>N</i> = 20	<i>N</i> = 30	<i>N</i> = 40	<i>N</i> = 50
Navigate	Metric	0.727	0.700	0.673	0.675
	Topological	0.789	0.750	0.705	0.662
Explore	Metric	0.554	0.593	0.621	0.630
	Topological	0.529	0.486	0.476	0.474
Escape	Metric	0.513	0.518	0.532	0.529
	Topological	0.439	0.396	0.386	0.378

Behavior	Distance	N = 20	<i>N</i> = 30
Navigato	Metric	$\textbf{0.727} \pm \textbf{0.038}$	$\textbf{0.700} \pm \textbf{0.056}$
Inavigate	Topological	$\textbf{0.789} \pm \textbf{0.053}$	0.750 ± 0.052
Explore	Metric	$\textbf{0.554} \pm \textbf{0.087}$	$\textbf{0.593} \pm \textbf{0.078}$
	Topological	$\textbf{0.529} \pm \textbf{0.108}$	$\textbf{0.486} \pm \textbf{0.075}$
Escape	Metric	$\textbf{0.513} \pm \textbf{0.058}$	0.518 ± 0.054
	Topological	$\textbf{0.439} \pm \textbf{0.049}$	$\textbf{0.396} \pm \textbf{0.049}$

Behavior	Distance	N = 40	<i>N</i> = 50
Navigato	Metric	$\textbf{0.673} \pm \textbf{0.068}$	0.675 ± 0.073
Inavigate	Topological	$\textbf{0.705} \pm \textbf{0.058}$	$\textbf{0.662} \pm \textbf{0.059}$
Explore	Metric	0.621 ± 0.057	$\textbf{0.630} \pm \textbf{0.049}$
	Topological	0.476 ± 0.073	0.474 ± 0.068
Escape	Metric	0.532 ± 0.033	$\textbf{0.529} \pm \textbf{0.036}$
	Topological	0.386 ± 0.036	0.378 ± 0.034